FOUR YEAR UNDERGRADUATE PROGRAM (2024 – 28) DEPARTMENT OF INDUSTRIAL CHEMISTRY COURSE CURRICULUM | p. | PART- A: | ntroductio | n | | | | | |-----|--|---|--|--|----------------|--|--| | | rogram: Bachelor i | | Semester - IV | Session: 2024-202 | 5 | | | | | Diploma / Degree/Honors) | | | | | | | | 1 | Course Code | ICSC-04T | | | | | | | 2 | Course Title | UNIT PROCESSES, INSTRUMENTATION, AND INDUSTRIAL SAFETY | | | | | | | 3 | Course Type | | DSC | | | | | | 4 | Pre-requisite (if, any) | | | | | | | | | Course Learning.
Outcomes (CLO) | To gain knowledge about hydrogenation reactions, catalysts for hydrogenation, alkylation, alkylating agents, manufacture, and mechanism of organic compounds To understand aminolysis, aminating agents, amination reaction and their mechanism. To understand the concept of construction, principle and working of temperature and pressure measuring instruments. To know about liquid level measurement, density, viscosity filters, precipitators, eliminators, scrubbers, absorbers, and industrial safety | | | | | | | + | Credit Value | measures. 3 Credits | Credit = 15 Hou | urs - learning & Observati | on | | | | _ | Total Marks | Max. Marks: | 100 | | 0 | | | | - | | | | Will I assing Walks. | | | | | 41 | | nt of the Co | | 1 D 45 D 1 1 (45 II | | | | | | Total No. of Teac | hing-learning | Periods (01 Hr. per per | riod) - 45 Periods (45 Hou | | | | | nit | | То | pics (Course conten | ts) | No. o
Perio | | | | Ι | reactions, hydrogena
monoxide and hydro
reforming.
Alkylation: | tion of vegetable | ation reactions, catalysts oil. Manufacture of met on of acid and esters to a | hanol from carbon | 12 | | | | | | benzene (for det | ergent manufacture), eth | sm of alkylation reactions,
ayl benzene, phenyl ethyl | | | | | T | manufacture of alkyl alcohol, N-alkyl anili Esterification: Introduction, hydrodorganic acids, by adderivatives, commercellulose acetate. | benzene (for detences (mono and deviamics and medicial manufacture | ergent manufacture), eth
i methylanilines).
chanism of esterification
urated compounds, este
of ethyl acetate, dioce | reactions, Esterification by erification of carboxy acid tyl phthalate, vinyl acetate | | | | | п | manufacture of alkyl alcohol, N-alkyl anili Esterification: Introduction, hydrody organic acids, by adderivatives, commercellulose acetate. Hydrolysis: Introduction By reduction: Introduction electrolytic, metal and oxidation, reduction, aminophenol. | benzene (for detences (mono and deviation of unsatured tion, hydrolyzing duction, methods dalkali sulfites, commercial manufacture | ergent manufacture), ether i methylanilines). chanism of esterification urated compounds, ester of ethyl acetate, diocing agents, mechanism of esterification of reduction - metal metal hydrides, sodium urfacture of aniline, | reactions, Esterification by erification of carboxy acid tyl phthalate, vinyl acetate f hydrolysis. and acid, catalytic, sulfide metal, concentrated caustic m-nitro aniline, p | 11 | | | | | manufacture of alkyl alcohol, N-alkyl anili Esterification: Introduction, hydrody organic acids, by adderivatives, commercellulose acetate. Hydrolysis: Introduction By reduction: Introduction electrolytic, metal and oxidation, reduction, aminophenol. | benzene (for detences (mono and deviamics and medidition of unsated and manufacture tion, hydrolyzing duction, methods alkali sulfites, commercial manufaction, aminatir | ergent manufacture), ethe i methylanilines). chanism of esterification urated compounds, ester of ethyl acetate, diocompounds, mechanism of esterification of ethyl acetate, diocompounds, ester of ethyl acetate, diocompounds of reduction - metal metal hydrides, sodium | reactions, Esterification by erification of carboxy acid tyl phthalate, vinyl acetate f hydrolysis. and acid, catalytic, sulfide metal, concentrated caustic m-nitro aniline, p | 11 | | | Indira & sall war! Aplu Akono Maghan S Concept of measurement and accuracy, principle, construction and working of following measuring instruments. Temperature: Glass thermometers, bimetallic thermometer, pressure spring thermometer, vapour filled thermometers, resistance thermometers, radiation pyrometers. Pressure: Manometers, barometers, bourdon pressure gauge, bellow type, diaphragm type pressure gauges, Macleod gauges, Pirani gauges, etc. (B) Liquid level: Direct-indirect liquid level measurement, Float type liquid level gauge. ultrasonic level gauges, bubbler system, density measurement, viscosity \ measurement. Bag filters, electrostatic precipitator, mist eliminators, wet scrubbers, absorbers, Industrial safety. Keywords Hydrogenation, alkylation, esterification, hydrolysis, amination, reduction, aminolysis, process instrumentation, temperature, pressure, liquid level. Signature of Convener & Members (CBoS): #### PART-C: **Learning Resources** Text Books, Reference Books and Others ## Text Books Recommended – - B. K. (2017). Industrial analysis. Gael Publication. - 2. Shali, A. K., & Parikh, D. V. (2008). Introduction to industrial chemistry (5th ed.). Tata McGraw-Hill Education. - 3. Mahajan, S. C., & Bhawalkar, V. D. (2010). Engineering chemistry (2nd ed.). Wiley India Pvt. Limited. - 4. Chakraborti, D., & Chakraborti, A. K. (2014). Industrial chemistry (5th ed.). New Age International Publishers. ### Reference Books Recommended- - 1. Perry, J. H. (1950). Chemical engineers' handbook (1st ed.). McGraw-Hill. - 2. Dunn, W. C. (2005). Fundamentals of industrial instrumentation and process control (1st ed.). - 3. Lipták, B. G. (Ed.). (2013). Process control: Instrument engineers' handbook (1st ed.). Butterworth-Heinemann. - 4. Groggins, P. H., & Groggins, P. H. (1958). Unit processes in organic synthesis (1st ed.). McGraw-Hill ### Online Resources- - https://archive.nptel.ac.in/courses/104/101/104101115/ - https://nptel.ac.in/courses/104103023 - https://uodiyala.edu.iq/uploads/PDF%20ELIBRARY%20UODIYALA/EL43/Introdu ction to InstrumentationSensors and Process Control.pdf - > https://ecampusontario.pressbooks.pub/powerplantsystemsandcontrols/chapter/instr ument-devices-level-measurement-and-control-2/ - https://mrcet.com/downloads/digital_notes/ME/IV%20year/MAINTENANCE%20& %20SAFETY%20ENGINEERING%20DIGITAL%20NOTES.pdf ### Online Resources- > e-Resources / e-books and e-learning portals ### PART -D: Assessment and Evaluation Suggested Continuous Evaluation Methods: Maximum Marks: 100 Marks Continuous Internal Assessment (CIA): 30 Marks 70 Marks End Semester Exam (ESE): Continuous Internal Internal Test / Quiz-(2): 20 +20 Assignment / Seminar -Assessment (CIA) Total Marks -30 Better marks out of the two Test / Quiz obtained marks in Assignment shall be considered against 30 Marks | (By Course Teacher) | | |---------------------|--| | Exam (ESE): | Two section — A & B Section A: Q1. Objective — 10 x1= 10 Mark; Q2. Short answer type- 5x4 = 20 Marks Section B: Descriptive answer type qts., lout of 2 from each unit-4x10=40 Marks | Name and Signature of Convener & Members of CBoS: Addition Addit # FOUR YEAR UNDERGRADUATE PROGRAM (2024 – 28) DEPARTMENT OF CHEMISTRY COURSE CURRICULUM | | | CO | URSE CURRICULUM | | | | | |---|---|------------------------------|--|------------------------|-----------------|--|--| | PART | Γ-A: Ir | troductio | | | | | | | Progr | am: Bachelor | | Semester-IV | Session:2024-202 | 25 | | | | | | ICSC-04P | | | | | | | 2 Cour | rse Title | | L CHEMISTRY LAB. COURSE-IV | | | | | | 3 Cour | se Type | DSC As per Program | | | | | | | - | equisite (if,any) | | | | | | | | 5 Cour
Oute | Course Learning | | As per Program ➤ To analyze the sample with different instruments. ➤ To develop understanding of material testing. ➤ To understand the working mechanism of instruments and different material characterization techniques. ➤ To analyze the quality of different water samples. | | | | | | 6 Credi | oredit Value 01Credit Credit = 30 Hours Laboratory or Field learning/Training | | | | | | | | 7 Total | Marks | Max.Marks:50 MinPassingMarks | | MinPassingMarks:2 | s:20 | | | | ART-B | : Content | of the Cou | rse | | | | | | otal No. o | f learning-Train | ning/performa | ance Periods: 30 Periods (| 30 Hours) | | | | | 1odule | | Topics(Coursecontents) | | | No.of
Period | | | | Lab./Field
Training/
Experiment
Contents
of Course. | INSTRUMENTAL METHODS OF ANALYSIS: Use of colorimeter, pH meter, Potentiometer, Conductometer, Refractometer, Polarimeter. MATERIAL TESTING-I: - Testing of alloys, Identification of plastics/rubber, estimation of yield point, Young's modulus, flaredness; Optical, Thermal, Mechanical and Electrical properties. MATERIAL TESTING-II: - Study of metallurgical microscope and sample preparation. Preparation and study of microstructure of cast Irons. Introduction to Nondestructive testing. WATER ANALYSIS: Solid contents, hardness, COD and other tests as per industrial specifications | | | | | | | | eywords | Instrumental r | nethods, Anal | lysis, material testing, wate | r, Young's modulus, ca | st iron, ph | | | | | meter, conduction | | ness, COD, microstructure | Å | | | | SignatureofCouvener & Members me and ### PART-C ## LearningResources:TextBooks,ReferenceBooksandOthers ### Text Books Recommended- - 1. Sharma, B. K. (1981). Instrumental methods of chemical analysis. Krishna Prakashan Media. - 2. Badwaik, H. R., Thote L.K.; Giri, T.K. (2022). Practical Handbook: Instrumental methods of analysis. VallabhPrakashan. Delhi, India. ### Reference Books Recommended- - 1. Clesceri, L. S. (1998). Standard methods for examination of water and wastewater. American publichealth association, 9 - 2. Rump, H. H. (1999). Laboratory manual for the examination of water, waste water and soil (No. Ed. 3). Wiley-VCH Verlag GmbH. - 3. Krautkrämer, J., &Krautkrämer, H. (2013). Ultrasonic testing of materials. Springer Science & Business Media. ## OnlineResources- e-Resources/e-booksande-learningportals - https://mlrip.ac.in/wp-content/uploads/2022/03/INSTRUMENTAL-METHODS-OF-ANALYSIS-LAB-MANUAL.pdf - https://byjus.com/chemistry/environmental-chemistry/ - https://ebooks.inflibnet.ac.in/esp16/chapter/waterpollution/#:~:text=The%20amount%20of%20dissolved%20oxygen,dissolved%20oxygen%20than% 20saline%20water. - https://law.resource.org/pub/in/bis/S11/is.13360.5.1.1996.pdf - https://www.accessengineeringlibrary.com/content/book/97800707047/chapter/chapter10 | Part-D: Assessmentand Evaluation | | | | | | | | |--|---|-----------------|---------------------|------------------------|--|--|--| | Suggested Continuous Evaluation Methods: | | | | | | | | | Maximum Marks: 50 Marks | | | | | | | | | Continuous Internal Assessment(CIA): 15 Marks | | | | | | | | | End Semester Exam(ESE) | | | | | | | | | Continuous Internal | Internal Test / Quiz-(2): | 10 €10 | Better marks out of | of the two | | | | | Assessment (CIA): | Assignment/Seminar +Attendance -05 Test / Qui | | Test / Quiz +obta | z +obtained marks in | | | | | (By Course Teacher) | Total Marks - | 15 | Assignment shall | be considered | | | | | | | | against 15 Marks | | | | | | Semester End | Laboratory / Field Skill P | | | Managed | | | | | Exam(SEE): | G. Performed the Task | based on lab. w | ork - 20 | by Course | | | | | L'aum (SEL). | Marks | | 40 | teacher as
per lab. | | | | | H. Spotting based on tools & technology (written) - 10 | | | | Status | | | | | | Marks | | l | Status | | | | | | I. Viva-voce (based on | principie/tecni | ology) - 05 | | | | | | | Marks | | | | | | | | | a M. I am of CP of: | , 0 | 1 Lind | 1(4) | | | | | Name and Signature of Conv | ener & Members of Chos: | 1 Ain | 24 Sullie | | | | | | lux Wint De Charles | | | | | | | | | A lies | | , | | | | | |